jueves, 20 de mayo de 2010

TALLER 12

SISTEMA DE ECUACIONES LINEALES
En matemática y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:







El problema consiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que

satisfacen las tres ecuaciones.
El problema de los sistemas lineales de ecuaciones

es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señales, Análisis estructural, estimación, predicción y más generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico.
En general, un sistema con m ecuaciones lineales n incógnitas puede ser escrito en forma ordinaria como:

Donde son las incógnitas y los números son los coeficientes del sistema sobre el cuerpo . Es posible reescribir el sistema separando con coeficientes con notación matricial:
(
1)
Si representamos cada matriz con una única letra obtenemos:
Donde A es una
matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan los coeficientes

No hay comentarios:

Publicar un comentario